Post Page Advertisement [Top]



Click here to send WhatsApp On Unsaved Mobile Numbers For Free

 

Handle Large Data Receiving From Database
Spring Boot 

Handle Large Data Receiving From Database

Handling large datasets, such as 1 lakh (100,000) records, in a Spring Boot application requires careful design to manage memory and performance. Here's a step-by-step approach:


1. Use Pagination

Fetching all records at once can overwhelm your application's memory. Instead, implement pagination to fetch data in smaller chunks.

Implementation:

  • Add pagination support to your repository using Spring Data JPA:

    @Repository
    public interface MyRepository extends JpaRepository<MyEntity, Long> {
        Page<MyEntity> findAll(Pageable pageable);
    }
    
  • Use it in your service:

    public Page<MyEntity> getData(int page, int size) {
        Pageable pageable = PageRequest.of(page, size);
        return myRepository.findAll(pageable);
    }
    
  • Return paginated responses to the client:

    @GetMapping("/data")
    public Page<MyEntity> fetchPaginatedData(
            @RequestParam int page, 
            @RequestParam int size) {
        return myService.getData(page, size);
    }
    

2. Streaming Data

For scenarios where the client needs the entire dataset but the server cannot hold it in memory, use streaming with Hibernate ScrollableResults or Spring Data JPA Stream.

Implementation:

  • Use Stream with Spring Data:

    @Query("SELECT e FROM MyEntity e")
    Stream<MyEntity> streamAll();
    
  • Stream and process data:

    @Transactional(readOnly = true)
    public void processLargeDataset() {
        try (Stream<MyEntity> stream = myRepository.streamAll()) {
            stream.forEach(entity -> {
                // Process each record
            });
        }
    }
    

3. Batch Processing

If you need to perform operations on a large dataset, use batch processing with frameworks like Spring Batch.

Implementation:

  • Configure a Job and Step in Spring Batch.
  • Use a chunk-oriented processing model:
    @Bean
    public Step step1() {
        return stepBuilderFactory.get("step1")
                .<InputType, OutputType>chunk(1000)
                .reader(itemReader())
                .processor(itemProcessor())
                .writer(itemWriter())
                .build();
    }
    

4. Optimize Database Query

Ensure your query retrieves only the necessary columns and filters unnecessary data at the database level.

Example:

SELECT id, name FROM my_table WHERE condition = 'value';
  • Use projections in JPA:
    @Query("SELECT new com.example.MyDTO(e.id, e.name) FROM MyEntity e WHERE e.condition = :condition")
    List<MyDTO> fetchPartialData(@Param("condition") String condition);
    

5. Async Processing

If fetching the data takes a long time, process it asynchronously to avoid blocking the main thread.

Implementation:

  • Use @Async:
    @Async
    public CompletableFuture<List<MyEntity>> fetchDataAsync() {
        return CompletableFuture.completedFuture(myRepository.findAll());
    }
    

6. Data Compression

If transferring large data over the network, consider compressing the response using GZIP:

  • Enable compression in Spring Boot:
    server:
      compression:
        enabled: true
        mime-types: application/json,application/xml
        min-response-size: 1024
    

Key Considerations:

  1. Memory Management: Avoid loading all data into memory at once.
  2. Database Tuning: Use indexes and optimized queries.
  3. Scalability: Test with larger datasets to ensure scalability.
  4. Client Handling: Implement proper client-side handling for large or paginated datasets.

These strategies ensure efficient handling of large datasets while maintaining application performance and reliability.


No comments:

Post a Comment

Bottom Ad [Post Page]

rrkksinha.